reklama
reklama
reklama
reklama
reklama
© Pixabay Nauka i technologie | 01 sierpnia 2022

PWr: stanowisko do produkcji zielonego wodoru ze słońca

Stanowisko fotowoltaiczne wyposażone w część do wytwarzania, magazynowania i zagospodarowania wodoru skonstruowali studenci Politechniki Wrocławskiej. Obecnie prowadzą badania sprawności paneli pod kątem naturalnych zabrudzeń, zacienienia, czy temperatury.

Stanowisko znajduje się na terenie Instytutu Automatyki Systemów Energetycznych IASE, przy Hali Stulecia. Składa się z czterech paneli oraz części wewnętrznej, czyli szafy elektrycznej z falownikiem, dwoma akumulatorami i aparaturą pomiarową, dzięki której można śledzić w stanie rzeczywistym m.in. napięcie i natężenie prądu wytwarzane przez panele. Do stanowiska jego twórcy podłączyli także skonstruowany przez siebie układ wodorowy.

Student energetyki, członek Studenckiego Koła Naukowego „Płomień” Tomasz Rybak wskazał, że obecnie największą barierą w rozwoju instalacji OZE jest niestabilność źródeł energii i przeciążenia w sieci dystrybucyjnej.

–  Możliwość wytwarzania wodoru w momentach największej produkcji energii z OZE, przy magazynowania go w bezpieczny i wydajny sposób, jest idealnym rozwiązaniem tego problemu. Dlatego jako koło zbudowaliśmy stanowisko do wytwarzania zielonego wodoru w elektrolizerze PEM (Proton Exchange Membrane), które jest zasilane energią elektryczną z paneli fotowoltaicznych – wyjaśnaia cytowany w komunikacie uczelni student.

Jak tłumaczą konstruktorzy, konwersja energii elektrycznej na wodór w takim stanowisku odbywa się w procesie elektrolizy. Odpowiadający za nią elektrolizer PEM wyposażony jest w membranę protonowymienną z dwiema dodatkowymi elektrodami: dodatnią i ujemną.

– Ta technologia zyskuje na popularności ze względu na szybki rozruch i możliwość dynamicznych zmian obciążeń, co doskonale współpracuje ze zmiennymi źródłami OZE – zauważa Dominik Bielecki, doktorant, który uczestniczył w pracach koła.

Składnikami potrzebnymi do procesu elektrolizy są woda destylowana i energia elektryczna.

– Woda – która składa się z dwóch cząsteczek wodoru i jednej cząsteczki tlenu – jest rozdzielana na elektrodzie dodatniej. Powstaje w ten sposób tlen, który można, ale nie trzeba magazynować, oraz dodatnie protony wodoru i elektrony. Membrana elektrolizera przepuszcza tylko protony wodoru, a ruch elektronów jest wymuszony przez zewnętrzny obwód dzięki doprowadzonej energii elektrycznej. Na elektrodzie ujemnej elektrony i protony wodoru łączą się, tworząc wodór o czystości nawet 99,999 proc., który można zmagazynować – opisują proces młodzi inżynierowie.

Dzięki temu w momencie większego zapotrzebowania na energię elektryczną można użyć go w procesie odwrotnym do elektrolizy – co dzieje się w ogniwie paliwowym. Efektem jest energia elektryczna, ale w mniejszej ilości niż energia, jaka jest potrzebna przy otrzymywaniu wodoru – dodają.

– Takie układy są intensywnie rozwijane ze względu na zwiększanie niesterowalnych źródeł odnawialnej energii, przez co trzeba będzie magazynować energię w szczytach jej produkcji i wykorzystywać, gdy będą jej braki, np. w nocy lub w okresie jesienno-zimowym – zwraca uwagę Tomasz Rybak.

Członkowie koła podkreślają, że wodór jest magazynowany w stanowisku w sposób gwarantujący bezpieczeństwo. Jest on gromadzony w butlach z wodorkami metali, co jest stabilniejsze niż magazynowanie ciśnieniowe, ze względu na brak wysokiego ciśnienia wewnątrz butli.

– Wodór jest zatłaczany pod niskim ciśnieniem do butli wypełnionej wodorkami metali, a następnie dzięki absorbcji „przyłącza się” do materiału stałego – wyjaśnia Dominik Bielecki dodając, że ta metoda pozwala na uzyskanie dużej zdolności magazynowania w niewielkiej powierzchni.

Członkowie koła pracują obecnie nad poszukiwaniem materiałów o właściwościach przyspieszających ten proces, ponieważ największym wyzwaniem w przypadku tej technologii jest tempo ładowania i rozładowywania magazynu.

Studenci i doktoranci budowali układ wodorowy pod okiem naukowców z Laboratorium Konwersji Energii, a same prace były możliwe dzięki grantowi z programu „Wspieramy Młodych Naukowców” prowadzonego przez Wydział Mechaniczno-Energetyczny PWr.

Teraz młodzi twórcy wykorzystują stanowisko fotowoltaiczne do prowadzenia badań sprawności paneli w zależności od naturalnych zabrudzeń, zacienienia czy ich temperatury.

Studenci w swoim stanowisku wykorzystują dwa rodzaje paneli: typu half-cut, standardowe z białymi ramkami między ogniwami oraz full-black, które są całe czarne. Jak tłumaczył Rybak, tzw. full-blacki z racji koloru absorbują więcej promieniowania, zwiększając temperaturę paneli, ale jednocześnie zmniejsza się ich sprawność. Natomiast panele monokrystaliczne typu half-cut wyróżniają się tym, że są podzielone na dwie części przez co w niektórych przypadkach zacienienia generują więcej mocy niż panele wykonane w technologii tradycyjnej tzw. full-cell.

Po zakończeniu badań studenci i doktoranci planują przygotowanie publikacji naukowej opisującej efekty swoich analiz.


Źródło: PAP – Nauka w Polsce, autorka: Agata Tomczyńska

reklama
November 15 2022 00:19 V20.10.16-2